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Abstract. An intense research on financial market microstructure is presently in progress. Continuous
time random walks (CTRWs) are general models capable to capture the small-scale properties that high
frequency data series show. The use of CTRW models in the analysis of financial problems is quite recent
and their potentials have not been fully developed. Here we present two (closely related) applications of
great interest in risk control. In the first place, we will review the problem of modelling the behaviour of
the mean exit time (MET) of a process out of a given region of fixed size. The surveyed stochastic processes
are the cumulative returns of asset prices. The link between the value of the MET and the timescale of the
market fluctuations of a certain degree is crystal clear. In this sense, MET value may help, for instance,
in deciding the optimal time horizon for the investment. The MET is, however, one among the statistics
of a distribution of bigger interest: the survival probability (SP), the likelihood that after some lapse of
time a process remains inside the given region without having crossed its boundaries. The final part of the
manuscript is devoted to the study of this quantity. Note that the use of SPs may outperform the standard
“Value at Risk” (VaR) method for two reasons: we can consider other market dynamics than the limited
Wiener process and, even in this case, a risk level derived from the SP will ensure (within the desired
quintile) that the quoted value of the portfolio will not leave the safety zone. We present some preliminary
theoretical and applied results concerning this topic.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 02.50.Ey
Stochastic processes – 05.40.Jc Brownian motion – 05.45.Tp Time series analysis

1 Introduction

The continuous time random walk (CTRW) formalism was
introduced four decades ago by Montroll and Weiss [1], as
a natural extension of ordinary random walks (RWs). In a
(one dimensional) RW you can randomly move through a
fixed grid either up or down, at regular time steps, whereas
in a CTRW the size of the movements and specially the
time lag between them are random. CTRWs have been
successfully applied to a wide and diverse variety of phys-
ical phenomena over the years [2]: transport in random
media, random networks, self-organized criticality, earth-
quake modelling; and recently also to finance [3–12]. In
this latter context, the efforts have been mostly focused
on the statistical properties of the waiting time between
successive transactions and the asset return at each trans-
action. Different studies in different markets are conceiv-
ing the idea that the empirical distributions of both ran-
dom variables are compatible with an asymptotic fat tail
behaviour [3–10].

Within the CTRW formalism we have recently inves-
tigated the mean exit time (MET) of asset prices out of a
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given region for financial time series [11,12]. In these arti-
cles we show that the MET follows a quadratic growth in
terms of the interval width, both in small and large scales.
We checked the persistence of this behaviour in time series
from several markets, such the foreign exchange market,
or the New York Stock Exchange (NYSE). The theoretical
model used in these works was based on two-state chain
Markovian processes. This model is able to both describe
the quadratic scaling property observed for the MET and
provide a mechanism that can incorporate asset peculiar-
ities through return autocorrelations.

One of the possible applications of the analysis of the
MET in finance is in the field of risk control. There is a
direct link between the value of the mean exit time out
of a region, and the timescale of market fluctuations of a
certain size. Therefore, its value may help, for instance, in
deciding the minimal time horizon for an investment, the
rotation rate of a portfolio, or even the value of stop-loss
and stop-limit levels for a position.

However, the mean exit time is only a statistic of
a distribution with even bigger interest: the survival
probability (SP), the probability that after some elapsed
time a process remains inside the given region without
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Fig. 1. A sample trajectory of the X(t) process along with the
corresponding value of the random variable t[a,b](x0).

having crossed its boundaries. This quantity may outper-
form the standard “Value at Risk” (VaR) method for two
reasons: it could be based on market statistics different
than the (unrealistic) Gaussian distribution, and it will
ensure (within the desired quintile) that the market value
of the portfolio will not leave the safe zone.

The paper is organized as follows. In Section 2 we dis-
cuss the MET within the CTRW formalism, under a mean-
ingful set of simplifying assumptions. In Section 3 we relax
some of the previous constrains in order to introduce some
memory into the process. Section 4 is devoted to the SP,
its properties and its connections with the MET. In Sec-
tion 5 we show in a practical situation how SP can be used
in risk control. Conclusions are drawn in Section 6.

2 Extreme events within CTRW

In the most common version of the CTRW formalism a
given random processX(t) shows a series of random incre-
ments or jumps at random times ..., t−1, t0, t1, t2, ..., tn, ...
remaining constant between these jumps. Therefore, after
a given time interval τn = tn − tn−1, the process experi-
ences a random increment ∆Xn(τn) = X(tn) − X(tn−1)
and the resulting trajectory consists of a series of steps as
shown in Figure 1. Waiting times τn and random jumps
∆Xn(τn) are described by their probability density func-
tions (pdfs) which we will denote by ψ(τ) and h(x) re-
spectively. We refer the reader to references [1–10] for a
more complete account of the CTRW formalism.

In the present work we will show two applications of
CTRWs to the study of extreme problems in financial time
series. We will take as underlying random process X(t)
the logarithmic price X(tn) = ln(S(tn)), where S(t) is
the stock price at time t. We first consider the problem of
obtaining the mean exit time ofX(t) out of a given interval
[a, b], of width L. We assume that at certain reference
time t0, right after an event, the price has a known value
X(t0) = x0, x0 ∈ [a, b]. Let us focus our attention on a
particular realization of the process and suppose that at
certain time tn > t0 the process first leaves the interval
— see Figure 1. We call the lapse tn − t0, the exit time

out of the region [a, b] and we will denote it by t[a,b](x0).
This quantity is a random variable since it depends on
the particular trajectory of X(t) chosen and the MET is
simply the average T[a,b](x0) = E[t[a,b](x0)].

The standard approach to exit time problems is based
on the knowledge of the survival probability — see Sec-
tion 4. In general, this is a quite involved path [13]. How-
ever, if we assume that τn and ∆Xn(τn) are independent
and identically distributed (i.i.d.) random variables, de-
scribed by a joint pdf ρ(x, τ),

ρ(x, τ)dxdτ = Prob{x < ∆Xn ≤ x+ dx;
τ < τn ≤ τ + dτ},

it can be shown [11] that one can obtain the MET directly,
without making use of the survival probability. In this
framework the MET T[a,b](x0) obeys the following integral
equation:

T[a,b](x0) = E[τ ] +
∫ b

a

h(x− x0)T[a,b](x)dx, (1)

where E[τ ] is the mean waiting time between jumps. It is
worth noticing that equation (1) is still valid even when
τn and ∆Xn are cross-correlated. In fact, in the case of an
i.i.d. process the MET only depends on ρ(x, τ) through its
marginal pdfs ψ(τ) and h(x).

We can illustrate the problem with a choice for h(x),
based on the small-scale properties of the system, which
results in the observed [11,12] quadratic growth in the
MET. Let us introduce the following symmetrical two-
state discrete model [12]:

h(x) =
1
2

[δ(x− c) + δ(x+ c)] , (2)

where c is the basic jump size. This choice for h(x) im-
plies that the flat levels in every particular trajectory will
be in a regular grid of size c centred at the starting point
x0. It is worth noticing that this approach is also used
in the context of option pricing, when the fair price of a
derivative product is obtained by making use of the bi-
nomial trees methodology, where it is assumed that the
stock price makes a jump up or down with some proba-
bility [14]. The solution of this problem, if we start from
the middle of the interval, reads:

T[a,b](a+ L/2)
E[τ ]

=
(

1 +
L

2c

)2

. (3)

If we consider a symmetric exponential function for the
jump distribution instead:

h(x) =
γ

2
e−γ|x|, (4)

a very similar result is obtained [11]:

T[a,b](a+ L/2)
E[τ ]

=
1
2

[
1 +

(
1 +

γL

2

)2
]
. (5)
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3 Mean exit time for Markov-chain models

In order to embrace also CTRWs with memory, we de-
rived in [12] an integral equation for the MET when the
jumps are Markovian. In particular, we focused on the
case in which it is possible to neglect the influence of
the past waiting time by assuming that the magnitude of
the previous change carries all the relevant information.
The equation in this case is:

T[a,b](x0|∆X0) = E [τ |∆X0]

+
∫ b

a

h(x− x0|∆X0)T[a,b](x|∆X)dx, (6)

with ∆X = x − x0. Now the MET depends only on
the marginal pdf of the return increments, h(x|∆X0),
and on the conditional expectation of the waiting time,
E [τ |∆X0], which has to be evaluated through the
marginal pdf, ψ(τ |∆X0). In order to solve equation (6)
and obtain explicit expressions for the MET we will use
again a discrete two-state model:

h(x|y) =
c+ ry

2c
δ(x− c) +

c− ry

2c
δ(x+ c),

where r is the correlation between the magnitude of two
consecutive jumps. The MET starting from the middle of
the interval reads now:

T[a,b](a+ L/2)
E[τ ]

=
2r

1 + r

(
1 +

L

2c

)
+

1 − r

1 + r

(
1 +

L

2c

)2

,

and, for large values of L/c, we recover the quadratic be-
haviour in the leading term:

T[a,b](a+ L/2)
E[τ ]

∼ 1 − r

1 + r

(
1 +

L

2c

)2

.

4 The survival probability

The survival probability is closely related to the MET as
we will shortly show. It measures the likelihood that, up
to time t, the process has been always in the interval [a, b]:

S[a,b](t− t0;x0) ≡ P {a ≤ X(t) ≤ b,

M(t) ≤ b,m(t) ≥ a|X(t0) = x0} ,
where we have defined the maximum and the minimum
value of X(t), M(t) and m(t), by:

M(t) = max
t0≤t′≤t

X(t′) , and m(t) = min
t0≤t′≤t

X(t′).

The financial interest of SP is clear: it may be very useful
in risk control. Note, for instance, the case b→ ∞. The SP
measures, not only the probability that you do not loose
more than a at the end of your investment horizon, like
VaR, but also in any previous instant.

It is notorious that we can recover the MET from the
Laplace Transform of the SP. Along the text we will de-
note the Laplace-transformed version of a time-dependent
function by means of a hat sign. If fact, as we have stated
above, this is the standard technique used in the litera-
ture for obtaining METs. The link between both magni-
tudes becomes apparent if we express the MET in terms
of P{t[a,b] ≤ v|x0}, the cumulative distribution function
(cdf) of the exit time:

T[a,b](x0) =
∫ ∞

0

vdP{t[a,b] ≤ v|x0}

=
∫ ∞

0

∫ v

0

dudP{t[a,b] ≤ v|x0}

=
∫ ∞

0

∫ ∞

u

dP{t[a,b] ≤ v|x0}du

=
∫ ∞

0

P{t[a,b] > u|x0}du.

Now, we must realize that the only way that t[a,b] can be
bigger than any given value is that the process has been
inside the interval up to that time:

P
{
t[a,b] > t− t0|x0

}
= P {a ≤ X(t) ≤ b,

M(t) ≤ b,m(t) ≥ a|X(t0) = x0} ,
and therefore,

T[a,b](x0) =
∫ ∞

0

S[a,b](u;x0)du = Ŝ[a,b](s = 0;x0).

It is not surprising that the survival probability follows
a renewal equation when also the mean exit time can be
expressed in such a way — see for instance reference [15].
In the present case, where we consider that the process
properties are depending, at most, on the size of last the
jump, we can derive the following two-dimensional integral
equation for the SP:

S[a,b](t− t0;x0|∆X0) = Ψ(t− t0|∆X0)

+
∫ t

t0

dt′
∫ b

a

dxρ(x − x0, t
′ − t0|∆X0)

× S[a,b](t− t′;x|∆X) (7)

where

Ψ(t− t0|∆X0) = ∫ +∞

t

dt′
∫ +∞

−∞
dxρ(x − x0, t

′ − t0|∆X0)

is the probability that the next sojourn will last more than
t− t0, given that the previous change was of size ∆X0. We
can step down the dimension of the integral equation by
considering the Laplace transform of equation (7),

Ŝ[a,b](s;x0|∆X0) =

Ψ̂(s|∆X0) +
∫ b

a

dxρ̂(x − x0, s|∆X0)Ŝ[a,b](s;x|∆X).
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Ŝ[a,b](s;x0) =
1

s

⎡
⎢⎢⎣1 − ψ̂(s)

cosh

{
γ

√
1 − ψ̂(s)

(
x0 − a+b

2

)}

√
1 − ψ̂(s) sinh

{
γ

√
1 − ψ̂(s)L/2

}
+ cosh

{
γ

√
1 − ψ̂(s)L/2

}
⎤
⎥⎥⎦ ,

Ŝ[a,b](s; a+ L/2) =
1

s

⎡
⎢⎢⎣1 − ψ̂(s)√

1 − ψ̂(s) sinh

{
γ

√
1 − ψ̂(s)L/2

}
+ cosh

{
γ

√
1 − ψ̂(s)L/2

}
⎤
⎥⎥⎦ .

Note that the problem is now much more complex, since it
involves the joint pdf of jumps and sojourns, ρ(x, t|∆X0),
not merely its marginal pdfs, h(x|∆X0) and ψ(τ |∆X0).
Even in the independent case, the integral equation is dif-
ficult to solve:

Ŝ[a,b](s;x0) = Ψ̂(s) + ψ̂(s)
∫ b

a

dxh(x − x0)Ŝ[a,b](s;x).

The problem of the two-state discrete model without
memory, equation (2), is affordable but the complexity of
the solution casts few light into the general understanding
of the issue. Therefore, we have left it for a forthcoming
work, and we have focused our attention on the symmetric
exponential case, equation (4), which gave similar results
for the MET — cf. equations (3) and (5). This model is
very suitable for our purposes because reduces the prob-
lem from solving an integral equation to finding the solu-
tion of a second-order (ordinary) differential equation:

∂2
xxŜ[a,b](s;x) = γ2(1 − ψ̂(s))

[
Ŝ[a,b](s;x) − s−1

]
,

with the following boundary conditions:

∂xŜ[a,b](s;x = a) = γ
[
Ŝ[a,b](s; a) − Ψ̂(s)

]
,

∂xŜ[a,b](s;x = b) = −γ
[
Ŝ[a,b](s; b) − Ψ̂(s)

]
.

Even though, the final expression in the Laplace domain
is so intricate:

see equation above
that, in general, it cannot be reverted to the time domain.
The solution when the process begins at the center of the
interval is somewhat simpler but still difficult to deal with:

see equation above
The result when the interval width L is infinite, but the
process begins at finite distance of one of the boundaries,
is even shorter:

Ŝ(−∞,x](s;x0) = Ŝ[x,∞)(s;x0)

=
1
s

⎡
⎣1 − ψ̂(s)

1 +
√

1 − ψ̂(s)
exp

{
−γ

√
1 − ψ̂(s)|x− x0|

}⎤
⎦ ,

and it can be directly compared with the same outcome
for the Wiener process:

Ŝ(−∞,x](s;x0) = Ŝ[x,∞)(s;x0)

=
1
s

[
1 − exp

{
−
√

2s
σ

|x− x0|
}]

, (8)

where the volatility σ is the square root of the diffusion
coefficient. The two formulas coincide for small values of
the Laplace variable s, that is, for large timescales. The
resemblance between both models when the interval width
is bounded is not so evident, because in the Wiener case
the SP can be only expressed in terms of an expansion
series:

Ŝ[a,b](s; a+ L/2) =
∞∑

k=0

8L2

(2k + 1)π

· (−1)k

σ2π2(2k + 1)2 + 2L2s
.

In any case, it is easy to check that the long-term be-
haviour of the MET is similar:

T[a,b](a+ L/2) = L2/4σ2.

5 Risk control

We will finally illustrate how SPs can be used in risk con-
trol. In order to clarify the concepts we will remove model-
dependant inferences by using the outcome corresponding
to the Wiener case. The Gaussian model is typically used
for computing the “Value of Risk” (VaR) level. VaR gives
the worst return you can obtain at the end of a fixed time
interval t− t0, for a given confidence level α. If we assume
that the market volatility is σ, then

VaR = σ
√

t − t0N−1 (1 − α) ,

where N (·) is the cdf for a Normal pdf. This measure of
the risk exposure of an open position ignores the instan-
taneous risk aversion of the investor, since it neglects the
fact that investors may not assume all the paths leading
to the same final return.

This will not be the case if we use SP for quantifying
the risk, since it will ensure, within the desired level
of confidence, that the position is never below the risk
measure, which we will call survival probability risk
(SpR). The Laplace inverse transform on equation (8)
reads,

S[x,∞)(t− t0;x0) = 1 − 2N
(
− |x− x0|
σ
√
t− t0

)
,
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Fig. 2. Risk values for a position lasting one month, if the
process follows a Wiener process with a volatility of 15%. We
compare, for different confidence levels, the measure of the risk
that both methods, VaR and SpR, yield. Clearly VaR under-
estimates the risk.

and therefore

SpR = σ
√

t − t0N−1

(
1 − α

2

)
.

In Figure 2 we will found a comparative example with the
two risk measures.

6 Conclusions

We have argued for the convenience of the use of CTRWs
in the modelling of stochastic processes in finance. CTRW
is a well suited tool for representing market changes at
very low scales, within the realm of high frequency data.
We have shown that this formalism allows a thorough
description of extreme events under a very general setting:
we have obtained renewal integral equations for magni-
tudes related to these events when the return can be de-
scribed by either an independent or a Markovian process.

We have revisited the properties of the MET, a statistic
that can inform about investment horizons. In previous
works we found that it seems to scale in a similar way for
different assets. We have addressed the topic of the SP in
finance afterwards. SP has even more severe implications
in risk management. SpR can improve the efficiency of
more traditional methods, like VaR. We have introduced
new theoretical results on this issue, and shown a practical
example of its application.

The authors acknowledge support from MEC under contract
No. FIS2006-05204.
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